ПРО ВИКОРИСТАННЯ ВІЛЬНО ПОШИРЮВАНИХ ГЛОБАЛЬНИХ ЦИФРОВИХ МОДЕЛЕЙ РЕЛЬЄФУ ВИСОКОЇ ПРОСТОРОВОЇ РОЗДІЛЬНОЇ ЗДАТНОСТІ ДЛЯ РОЗРАХУНКІВ ВОДНОЇ ЕРОЗІЇ ГРУНТУ
DOI:
https://doi.org/10.18524/2303-9914.2020.2(37).216561Ключові слова:
SRTM90, SRTM30, ASTER GDEM, AW3D30, ерозія грунту, розрахунки, оцінка точностіАнотація
Виконано оцінку точності відображення рельєфу вільно поширюваними глобальними цифровими моделями рельєфу високої просторової роздільної здатності SRTM, ASTER GDEM і AW3D30 і можливості їх використання для просторово-розподілених розрахунків водної ерозії грунтів. Оцінка точності цифрових моделей рельєфу виконана для тестової ділянки площею близько 340 км2, розташованої на півночі Одеської області на південних відрогах Подільської височини. Як еталон використана цифрова модель рельєфу, побудована на основі оцифровки великомасштабної топографічної карти і подальшої просторової інтерполяції результатів методом звичайного точкового кригінга.
Посилання
Bumblis V. I. (2007), Relef territoriy kak prostranstvennyy funktsionalnyy i resursnyy bazis nedvizhimosti i dvizhimosti [Territory relief as a spatial functional and resource basis of real estate and movable]. Geoinformatsionnyy portal GIS-Assotsiatsii. Available at: http://www.gisa. ru/41696.html [Accessed 21 September 2020].
Dubinin M. (2009), Obshchee opisanie ASTER GDEM [General description of ASTER GDEM]. Website GIS-Lab. Available at: https://gis-lab.info/qa/aster-gdem.html [Accessed 21 September 2020].
Dubinin M. (2014) Opisanie i poluchenie dannykh SRTM [Description and acquisition of SRTM data]. Website GIS-Lab. Available at: https://gis-lab.info/qa/srtm.html [Accessed 21 September 2020].
Zharov V. Ye. (2006), Sfericheskaya astronomiya [Spherical astronomy]. Fryazino, 480 p.
Karpukhina N. V., Sizov O. S. (2020), Metodicheskie aspekty glyatsiomorfologicheskogo kartografirovaniya v kraevoy zone yugo-vostochnogo sektora poslednego skandinavskogo lednikovogo pokrova [Methodological aspects of glaciomorphological mapping in the marginal zone of the southeastern sector of the last Scandinavian ice sheet], Geomorphology, No 2, pp. 21-38. Available at: DOI: 10.31857/S0435428120020054 [Accessed 21 September 2020].
Kozub Yu. I. (2018), Povyshenie tochnosti tsifrovoy modeli relefa dlya tseley landshaftnogo kartografirovaniya na territoriyu Respubliki Dagestan [Improving the accuracy of the digital elevation model for the purposes of landscape mapping on the territory of the Republic of Dagestan]. Bulletin of the Dagestan State Pedagogical University. Natural and exact sciences, vol. 12, No. 3, pp. 96-102. Available at: DOI: 10.31161/1995-0675-2018-12-3-96-102 [Accessed 21 September 2020].
Larionov G. A. (1993). Eroziya i deflyatsiya pochv [Soil erosion and deflation]. Moskow, Publishing house Mosk. un-ta, 200 p.
Maltsev K. A., Golosov V. N., Gafurov A. M. (2018), Tsifrovye modeli relefa i ikh ispolzovanie v raschetakh tempov smyva pochv na pakhotnykh zemlyakh [Digital elevation models and their use in calculating the rate of soil washout on arable land]. Scient. Not, Kazan. un-t. Ser. Natural Science, vol.160, book. 3, pp. 514–530.
Meshin I. N. (2012). Postroeniya tsifrovoy modeli relefa po dannym radarnoy interferometricheskoy semki [Building a digital elevation model based on radar interferometric survey data]. Automated technologies of survey and design, No.1(44), pp. 60-63.
Svitly`chny`j O. O., Chorny`j S. G. (2007), Osnovy` eroziyeznavstva [Bases of soil erosion science]. Sumy: VTD "University Book", 266 p.
Abrams, M., Crippen, R., Fujisada, H. (2020), ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD) // Remote Sens., 12(7). Available at: https:// doi.org/10.3390/rs12071156. [Accessed 28 September 2020]..
Rodriguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., Hensley, S. (2005), An assessment of the SRTM topographic products, Technical Report JPL D-31639 // Jet Propulsion Laboratory, Pasadena, California, 143 p. Available at: https://www2.jpl.nasa.gov/srtm/ SRTM_D31639.pdf [Accessed 21 September 2020].
Apeh O. I., Uzodinma V. N., Ebinne E. S., Moka, E. C. Onah E. U. (2019), Accuracy Assessment of Alos W3d30, Aster Gdem and Srtm30 Dem: A Case Study of Nigeria, West Africa // Journal of Geographic Information System, vol. 11, pp. 111-123. Available at: DOI: 10.4236/jgis.2019.11200 [Accessed 21 September 2020].
ASTER GDEM Readme File – ASTER GDEM Version 1. Available at: http://www.gisat.cz/images/upload/6fbe0_aster-gdem-readme-ev1-dot-0.pdf [Accessed 21 September 2020].
Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis., B., Haase, J., Abrams,. M., Crippen,. R., Carabaja, C. (2011), ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results. ASTER GDEM Validation Team, 27 p. Available at: https://pdfs.semanticscholar.org/6306/3a4b83357be18f2b453cfe34509c8b77da07.pdf?_ga=2.36226022.738829358.1594921941-993585188.1594921941 [Accessed 21 September 2020]
Abrams, M., Crippen, R. (2019), ASTER GDEM V3 (ASTER Global DEM). User Guide, 10 p. Available at: https://lpdaac.usgs.gov/documents/434/ASTGTM_User_Guide_V3.pdf [Accessed 21 September 2020].
ALOS Global Digital Surface Model (DSM) “ALOS World 3D-30m” (AW3D30) Dataset. Product Format Description. Version 1.1 (2017). Earth Observation Research Center (EORC), Japan Aerospace Exploration Agency (JAXA), 8 p. Available at: http://docplayer.net/54804225-Alos-global-digital-surface-model-dsm-alos-world-3d-30m-aw3d30-dataset-product-format-description-version-1-1.ht[Accessed 21 September 2020]. [Accessed 21 September 2020].
ASTER Global DEM Validation: Summary Report (2009). METI & NASA ASTER GDEM Validation Team, 28 p. Available at: https://pdfs.semanticscholar.org/5606/ead88307ae1700c3db6744c6be5aedc4935c.pdf?_ga=2.258449996.738829358.1594921941-993585188.1594921941 [Accessed 21 September 2020].
Earth Explorer (2015), USGS, Earth Resources Observation and Science Center, Sioux Fall, SD. Available at: http://earthexplorer.usgs.gov [Accessed 21 September 2020].
Ouerghi, S., ELsheikh, R. F. A., Achour, H., Bouazi, S. (2015), Evaluation and Validation of Recent Freely-Available ASTER-GDEM V.2, SRTM V.4.1 and the DEM Derived from Topographical Map over SW Grombalia (Test Area) in North East of Tunisia // Journal of Geographic Information System, 7, pp. 266-279. Available at: http://dx.doi.org/10.4236/jgis.2015.73021 [Accessed 28 September 2020].
Florinsky, I. V., Skrypitsyna, T. N., Luschikova, O. S. (2018), Comparative accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: A case study on the Zaoksky testing ground, Central European Russia // Remote Sensing Letters, vol. 9, is. 7, pp. 706-714. Available at: https:// doi.org/10.1080/2150704X.2018.1468098 [Accessed 21 September 2020].
Frey, H., Paul, F. (2012), On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories // International Journal of Applied Earth Observation and Geoinformation, vol. 18, pp.480-490. Available at: https://doi.org/10.1016/j. jag.2011.09.020 [Accessed 21 September 2020].
High-Resolution Topography Data and Tool (2010), OpenTopography Website, 2020. – Available at:: https://portal.opentopography.org/datasets [Accessed 21 September 2020].
Jarvis, A., Reuter, H. I., Nelson A., Guevara E. (2008), Hole-filled SRTM for the globe: version 4 / CGIAR Consortium for Spatial Information Website. [Available at: http://srtm.csi.cgiar.org [Accessed 21 September 2020].
Mondal, A., Khare, D., Kundu, S. (2016). Uncertainty analysis of soil erosion modeling using different resolution of open source DEMs // Geocarto International. Available at: http://dx.doi.or g/10.1080/10106049.2016.1140822 [Accessed 21 September 2020].
New Version of the ASTER GDEM (2019), Nasa EARTHDATA Website. Available at: https:// earthdata.nasa.gov/learn/articles/new-aster-gdem [Accessed 21 September 2020].
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., Iwamoto, H. (2014), Precise Global DEM Generation by ALOS PRISM, ISPRS Ann. Photogramm // Remote Sens. Spatial Inf. Sci., II-4, 71–76. Available at: https://doi.org/10.5194/isprsannals-II-4-71-2014, 2014 [Accessed 21 September 2020].
Reuter, H. I, Nelson, A., Jarvis, A. (2007), An evaluation of void filling interpolation methods for SRTM data // International Journal of Geographic Information Science, 21:9, pp. 983-1008. Available at: http://srtm.csi.cgiar.org/downl.ad/Reuteretal2007.pdf [Accessed 21 September 2020].
Rodríguez, E., Morris, C. S., Belz, J. E. (2006), A Global Assessment of the SRTM Performance // Photogrammetric Engineering & Remote Sensing, vol. 72, No. 3, pp. 249–260. Available at: http://citeseerx.ist.psu.edu/viewdoc/download? DOI:10.1.1.404.4045&rep=rep1&type=pdf [Accessed 21 September 2020]. Santillan, J. R., Makinano-Santillan, M. (2016), Vertical Accuracy Assessment of 30-m Resolu
tion ALOS, ASTER, and SRTM Global DEMs over Northeastern Mindanao, Philippines // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 149-156. Available at: https://doi.org/10.5194/isprsarchives-XLI-B4-149-2016 [Accessed 21 September 2020].
Sefercik, U. G., Gokmen, U. (2019), Country-scale discontinuity analysis of AW3D30 and SRTM Global DEMS: case study in Turkey // Arabian Journal of Geosciences, 12, 7: 226. Available at: https://doi.org/10.1007/s12517-019-4370-8 [Accessed 21 September 2020].
SRTM 90m Digital Elevation Database v4.1 (2020). CGIAR CSI Consortium for Spatial Informftion Website. Available at: https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/ [Accessed 21 September 2020].
Svetlitchnyi, А. A., Piatkova, A. V. (2019), Spatially distributed GIS-realized mathematical model of rainstorm erosion losses of soil // Journal of Geology, Geography and Geomorphology, 28(3), pp. 562-571. Available at: DOI: 10.15421/111953 [Accessed 21 September 2020].
Szabó, G., Singh, S. K., Szabó, S. (2015), Slope angle and aspect as influencing factors on the accuracy of the SRTM and the ASTER GDEM databases // Phys. Chem. Earth, Parts A/B/C, 2015, vols. 83–84, pp. 137–145. Available at: doi: 10.1016/j.pce.2015.06.003 [Accessed 21 September 2020].
Takaku, J., Tadono, T., Tsutsui, K. (2014), Generation of High Resolution Global DSM from ALOS PRISM // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, vol.XL-4, pp.243-248. Availavle at: https://doi.org/10.5194/isprsarchives-XL-4-243-2014 [Accessed 21 September 2020].
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D. (2007), The Shuttle Radar Topography Mission // Review of Geophysics, 45, RG2004. Available at: https://doi.org/10.1029/2005RG000183 [Accessed 21 September 2020].
Rabus, B., Eineder, M., Roth, A., Bamler, R. (2003), The Shuttle Radar Topography Mission—A New Class of Digital Elevation Models Acquired by Spaceborne Radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 241-262. Available at: http://dx.doi.org/10.1016/S0924- 2716(02)00124-7 [Accessed 21 September 2020].
Mondal A., Khare, D., Kundu, S., Mukherjee, S., Mukhopadhyay, A., Mondal, S. (2017), Uncertainty of soil erosion modeling using open source high resolution and aggregated DEMs. Geosci. Front., , vol. 8, no. 3, pp. 425–436. Available at: DOI: 10.1016/j.gsf.2016.03.004 [Accessed 21 September 2020].
Takaku, J., Tadono, T., Tsutsui, K., Ichikawa, M. (2016), Validation of ‘AW3D’ global DSM generated from ALOS PRISM // ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, pp. 25-31. – Available at: DOI: 10. 5194/isprscannals-III-4-25-2016 [Accessed 21 September 2020].
Yap, L., Kandé, L. H., Nouayou, R., Kamguia, J., Ngouh, N. A. and Makuate, M. B. (2019), Vertical Accuracy Evaluation of Freely Available Latest High-Resolution (30 m) Global Digital Elevation Models over Cameroon (Central Africa) with GPS/Leveling Ground Control Points. International Journal of Digital Earth, 1-25. Available at: https://doi.org/10.1080/17538947.2018. 1458163 [Accessed 21 September 2020].
World Elevation Data (30-meter mesh version) is now available at JAXA's site free of charge! (2015), Japan Aerospace Exploration Agency JAXA Website. Available at: https://global.jaxa.jp/ projects/sat/alos/index.html [Accessed 21 September 2020].
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Вісник Одеського національного університету. Географічні та геологічні науки
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Авторські права охороняються Законом України “Про авторське право і суміжні права”.
Автор зобов’язаний подавати свої матеріали у вигляді, що відповідає вимогам відповідних стандартів з підготовки авторських оригіналів та правил, установлених редакцією.
У разі відмови автору в публікації його матеріалів він має право на одержання висновку щодо цього.
Редакційна колегія залишає за собою право на редакційні виправлення.
Гонорар за опубліковані роботи авторам не сплачується, друкований примірник не видається.
Правовласниками опублікованого матеріалу являються авторський колектив та засновник журналу на умовах, що визначаються видавничою угодою, що укладається між редакційною колегією та авторами публікацій. Ніяка частина опублікованого матеріалу не може бути відтворена без попереднього повідомлення та дозволу автора.
Публікація праць в Віснику здійснюється на некомерційній основі.
Усі права на матеріали, опубліковані в Журналі, захищені. Будь-яке використання матеріалів, опублікованих в Журналі повністю або частково, без дозволу Видавництва забороняється. Запити відносно усіх видів використання вказаних матеріалів повинні спрямовуватися у Видавництво.
Автор (співавтори) несуть усю відповідальність за науковий зміст, достовірність відомостей, використовуваних в статті, а також за збереження державної і комерційної таємниці.
Відхилені редколегією статті авторам не повертаються. Рецензент і члени редколегії журналу не мають права використовувати матеріали статті без письмового дозволу автора.